Seeking Evidence for the Multiverse in Particle Physics

Lawrence Hall University of California, Berkeley

Oxford September 2009

Lots of assumptions! Can't look inside the box!

$m_e = 0.51099$ MeV

Why three gauge forces?

Judge theories by evaluating these two types of prediction

Exact Symmetry

 p_1

Assumptions: Symmetry, Symmetry breaking

Distribution f

Distribution f

Distribution f

- (fine-tuning)

Structural Evidence

	<u>Phenomena:</u>	Theor
Ι.	$F_{Coul} \propto \frac{1}{m^2}$	QED
2.	Hadron spectrum,	QCD
3.	Short range of weak interactions,	Higgs b
4.	Q(3,2,1/6), L(1,2,-1/2),	Unified
5.	Mass hierarchy $M_W \ll M_{Pl}$	Weak s
	Puzzling array of phenomena	Order

Ϋ́

oson

theory, SU(5)

scale supersymmetry

Order and simplicity

Quantitative Evidence

<u>Theory</u>	<u>Predicts</u>
I. QED	g-2 = 1159.6
2. QCD	several at 5%
3. Higgs boson	?? (problen
4. Unified theory, SU(5)	coupling unifi
5.Weak scale supersymmetry	coupling unifi
Order and simplicity	

- 552I...
- 6
- ns with alternatives)
- cation at 5%
- ication at 1%

The Structural Problem of the Standard ModeL

- ⋇ Why is the weak scale so small $M_W \ll M_{Pl}$?
- ⋇ Must arrange for 32 orders of magnitude cancellation

$$M_W^2 = M$$

 $I_1^2 - M_2^2$

The Structural Problem of the Standard Model

- ⋇ Why is the weak scale so small $M_W \ll M_{Pl}$?
- ⋇ Must arrange for 32 orders of magnitude cancellation

$$M_W^2 = M$$

- ⋇ Three known solutions:

$I_1^2 - M_2^2$

I. Elementary Higgs boson does not exist

2. Supersymmetry is at the weak scale

3. The weak scale varies in the multiverse Agrawal, Barr, Donoghue, Seckel hep-ph/9707380

The Structural Problem of the Standard Model

- ⋇ Why is the weak scale so small $M_W \ll M_{Pl}$?
- ⋇ Must arrange for 32 orders of magnitude cancellation
 - $M_W^2 = M_1^2 M_2^2$
- ⋇ Three known solutions: No complex nuclei -----------> M_{Pl} 10^{16}

I. Elementary Higgs boson does not exist

2. Supersymmetry is at the weak scale

3. The weak scale varies in the multiverse Agrawal, Barr, Donoghue, Seckel hep-ph/9707380

 M_W

Split Supersymmetry, Arkani-Hamed, Dimopoulos, hep-th/0405159

Assume Higgs and top quark masses vary in multiverse Standard Model correct to very high energies Brian Feldstein, LJH, Taizan Watari; hep-ph/0608121

⋇ Assume Higgs and top quark masses vary in multiverse Standard Model correct to very high energies

Brian Feldstein, LJH, Taizan Watari; hep-ph/0608121

Top Mass

A Catastrophic Phase Transition

⋇ Assume Higgs and top quark masses vary in multiverse Standard Model correct to very high energies

Brian Feldstein, LJH, Taizan Watari; hep-ph/0608121

Top Mass

A Catastrophic Phase Transition

⋇ Assume Higgs and top quark masses vary in multiverse Standard Model correct to very high energies

Brian Feldstein, LJH, Taizan Watari; hep-ph/0608121

Top Mass

A Catastrophic Phase Transition

☀ Assume Higgs and top quark masses vary in multiverse Standard Model correct to very high energies

⋇ If Higgs discovered close to boundary:

*

Brian Feldstein, LJH, Taizan Watari; hep-ph/0608121

Evidence that multiverse solved structural fine tuning problem

(The other two known solutions are excluded)

Symmetries v Multiverse

	SU(5)
Huge extrapolation	Energy
Features that will never be tested	$pp \rightarrow XX$
Structural evidence	q(3,2,1/6),
Primary quantitative evidence	$g_1 = g_2 = g_3$
Further quantitative evidence	$m_b/m_{ au}$
New experiments needed	proton decay, ?? weak scale supersymmetry ??

weak scale supersymmetry ??

Multiverse

Distance

 α', m'_e, \dots

 $M_W \ll M_{Pl}$

 M_W (Λ)

 m_H ??

precision m_t, g_3

Criticisms of the multiverse:

I. Many aspects of the theory cannot be tested

True

The same is true for SU(5), inflation, baryogenesis, axions, quark masses, ...

For any new theory the question is the same: Can we obtain sufficient evidence to be convinced?

Criticisms of the multiverse:

I. Many aspects of the theory cannot be tested True

The same is true for SU(5), inflation, baryogenesis, axions, quark masses, ...

For any new theory the question is the same: Can we obtain sufficient evidence to be convinced?

2. A Retreat/Disappointment

No "fundamental" calculation of α, m_{ρ}, \dots

if by "fundamental" you mean "symmetries" ... but little success in 35 years True

Multiverse offers an alternative way to calculate

Criticisms of the multiverse:

I. Many aspects of the theory cannot be tested True

The same is true for SU(5), inflation, baryogenesis, axions, quark masses, ...

For any new theory the question is the same: Can we obtain sufficient evidence to be convinced?

<u>2. A Retreat/Disappointment</u>

No "fundamental" calculation of α, m_{ρ}, \dots

if by "fundamental" you mean "symmetries" ... but little success in 35 years True

Multiverse offers an alternative way to calculate

An exciting advance! Shouldn't we give it a try?

Higgs and Top Mass Predictions

What is the future of the field?

Nuclear Boundaries

$$\left(\alpha, \frac{m_e}{m_p}, \frac{m_u}{m_p}, \frac{m_d}{m_p} \right)$$

2d slice

Yasunori Nomura, LJΗ arXiv:0712.2454

Nuclear Boundaries

$$\left(\alpha, \frac{m_e}{m_p}, \frac{m_u}{m_p}, \frac{m_d}{m_p} \right)$$

2d slice

Yasunori Nomura, LJΗ arXiv:0712.2454

Nuclear Boundaries

$$\left(\alpha, \frac{m_e}{m_p}, \frac{m_u}{m_p}, \frac{m_d}{m_p} \right)$$

2d slice

Yasunori Nomura, IJН arXiv:0712.2454

Nuclear Boundaries

$$\left(\alpha, \frac{m_e}{m_p}, \frac{m_u}{m_p}, \frac{m_d}{m_p} \right)$$

2d slice

Yasunori Nomura, LJΗ arXiv:0712.2454

Understanding Coincidences

尜

Why are the three contributions to $Q(n \rightarrow pev)$ comparable?

 m_e, m_u, m_d are determined by the physics of the boundary comparable?

Understanding Coincidences

Why are the three contributions to $Q(n \rightarrow pev)$ comparable?

 m_e, m_u, m_d are determined by the physics of the boundary comparable?

*

券

券

 $m_{e} \simeq \delta_{EM}$

 $m_{u,d} \simeq \frac{B}{N}, B_D$